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Figure 1. Visualization of a functional map matrix as heatmap and
its corresponding texture transfer example between shapes. Figure
adapted from [1].

Abstract

This report delves into functional maps [2], a represen-
tation of maps between shapes that differs from a typical
point-to-point map. This representation, in the form of a
small matrix, is efficient to compute and inference, and can
encode near-perfect mapping information between shapes.
Introduced in 2012, functional maps have been studied ex-
tensively for a decade and have numerous iterations and
variations. This report aims to provide an intuitive under-
standing of this representation, its significance, and its ap-
plications for non-rigid shape matching.

1. Introduction

Shape matching is central to many geometry processing
tasks. And in the domain of shape matching, functional
maps [2] emerged in 2012 from the need to address non-
rigid shape matching challenges. This stood in stark con-
trast to its rigid counterpart. While the problem of rigid
shape matching had been considered as well-established:
rigid correspondences can be compactly represented using
rotations and translations, typically in a 4 x 4 matrix, the

non-rigid shape matching wasn’t benefiting from such con-
straints. Given that any point might be mapped to any other
point, the solution space becomes exponential to the num-
ber of points. This made it challenging to limit the possi-
ble solutions leading them to design complex and intricate
methods. Typically such methods weren’t very straightfor-
ward. Common approaches involved for example restrict-
ing the matches to a sparse set of points [3] [4] or imposing
additional constraints, such as enforcing the preservation of
relative geodesic distances for the match [4].

The brilliance of functional maps lies in its proposal to
offer a representation as compact as that of rigid alignment.
This essentially means attempting to shrink the solution
space of the non-rigid problems, making it closely resem-
ble that of the rigid scenario.

This was done possible by shifting into the spectral do-
main. It is widely recognized that many complicated prob-
lems tend to simplify when solved in the spectral domain.
This proved true for our non-rigid shape matching problem
as well. Thus, the understanding and intuition can be further
expanded from this perspective.

2. Background
2.1. Fourier Analysis

The starting point stems from the domain of Fourier
Analysis. At its essence, for any specified function, Fourier
Analysis enables us to break it down into its low-frequency
components. By adding up these low-frequency parts, an
approximation of the original function can be reconstructed.
A desirable property of this process is that only the co-
efficients of these low-frequency parts need to be stored.
This essentially means that a function can be represented,
or compressed into its coefficients.

2.2. Image Compression

Let’s delve into a practical extension: image compres-
sion. Visualizing sine waves as the underlying basis func-
tions for images, in Figure 2, we are presented with an orig-
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Figure 2. Image Compression Using Fourier Basis Functions. Im-
age on the left, spectral coefficients on the right. Compression
involves retaining only the low-frequency components. Figure
adapted from [5].

inal image on one side and its complete spectral coefficients
on the other, the act of compression can be achieved by re-
stricting the representation to only its low-frequency com-
ponents.

To further expand our understanding, we should famil-
iarize ourselves with discretization and matrix notation.
Consider every image as an extended vector (represented
by f). The act of multiplying these basis functions (rep-
resented by ®) with their corresponding coefficients (rep-
resented by a) and subsequently summing them up can be
expressed as a matrix-vector multiplication. This operation
is the process of recovering the original or approximated
image from its coefficients.

f=®-a )

For compression operation, the aforementioned equation
is inverted. Fortunately, Fourier bases are orthogonal. This
means that their inverse is simply their transpose. It’s also
important to note that if we compress the original, sharp
image, by the low-frequency bases, the high-frequency in-
formation is eliminated, leading to loss in detail. But if we
compress an image that is already compressed, no informa-
tion is lost.

a=o'f 2)

or

a=9o".f 3)

2.3. Eigenfunctions of the Laplace-Beltrami Oper-
ator

The overall objective is to compress the correspondence
information between shapes. However, this requires a shift
from the Fourier basis to an alternative one, namely the
eigenfunctions of the Laplace-Beltrami Operator (LBO). In
the field of shape analysis, the LBO has been one of the

| " "B B R ]
» ) |
o B N i . d b
- S— S ——
i . ) ] LR N N |
F s » .
» | | | LR I ]

Figure 3. LBO Basis Functions (middle) on a flat square surface
compared to Fourier basis (top row) and the similar patterns ob-
served in a Chladni plate sand experiment. Figure adapted from [7]
and [8].

most important tool that has been used all over the place,
sometimes regarded as the ”Swiss army knife” for shape
analysis.

While a deep dive into the LBO isn’t necessary for our
discussion, it is vital to understand the fundamental proper-
ties of its eigenfunctions. Analogous to the Fourier basis,
these eigenfunctions are characterized by their frequencies
and are orthogonal. To provide a more visual understand-
ing, see Figure 3 for an illustration. These patterns illustrate
the vibration modes of surfaces and can be quite intriguing
or even enlightening. A classic demonstration of this phe-
nomenon is the Chladni plate sand experiment [6], where
varying frequencies result in distinct sand patterns on a vi-
brating plate.

Given that any shape can vibrate, this allows us with
a generally defined spectral basis, well-suited for arbitrary
shape surfaces encountered in shape matching problems.

Drawing parallels to our earlier discussion on image
compression, these eigenfunctions can be employed to ap-
proximate functions (including images) on various surfaces.
The notational representation for reconstructing functions
and compression or projection remains consistent with our
previous ones.

2.4. Correspondences between Shapes

Recall again that our main objective is to approximate
correspondences between two shapes. To further clarify,
by “correspondence”, we refer to a point-to-point mapping
in our context. It can be represented as a permutation ma-
trix (represented by P), which aligns (permutes) the vertex
points between the two shapes. As an interpretation of its
role, this point map serves in transferring functions from
one shape to the other.

fi=P-fo “4)

For illustrative purposes, consider a color transfer. We
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Figure 4. Functional Map and its recovered fuzzy Point Map

can designate a color to each vertex point on a shape and
represent it as a long vector. The point map can be used to
transfer or permute this color to corresponding vertexes on
another shape.

The goal is to use our established basis functions to ap-
proximate this permutation matrix, compress it into com-
pact spectral coefficients. To correctly compress the point
map, it’s crucial to recognize that the map bridge across two
shapes, meaning that we need to use basis from both shapes.
On an intuitive level, this can be done by squeezing it from
two sides, and this reduced matrix is called the ”functional
map” (represented by C').

C=a].P o 5)

And drawing parallels to the previous discussion again,
the recovery process from the functional map back to a point
map can be achieved by applying the operations inversely.

P =&, -C -} (6)

What’s recovered, however, will not not a crisp, clear
point map, instead a soft, diffused matrix, very roughly (not
strictly) can be thought of as probability distributions. For a
more intuitive grasp, think of this fuzzy matrix as the likeli-
hood or chances of where this point is being mapped to. To
retain a crisp hard point map, one can employ the argmax
operation, where we identify the maximum value in each
row and assign 1.

At this point, a natural question arises: Just how accu-
rate is a functional map? To better understand functional
map’s accuracy, we look at a texture transfer example be-
tween two shapes in Figure 5. Using both a ground truth
point map and a functional map representation with 30 ba-
sis functions, textures are transferred from the source shape
to the target shape. But without revealing which method
was used for which result, it’s not straightforward to deter-
mine the method of each. The surprising outcome is that
functional map representation is incredibly accurate despite
the low frequency basis used. In comparison to the im-
age compression example earlier, where the differences be-
tween the original and compressed versions were immedi-
ately evident, the distinctions here aren’t as clear.

Figure 5. Texture Transfer: Source (left) and Target (right) visual-
izations obtained through ground truth Point Map and Functional
Map. The specific method for each figure is intentionally not spec-
ified here. Figure from [1].

To truly grasp the high accuracy of the functional map,
we need to dive into its core principles.

3. Method Overview

The concept of the functional map can be illustrated from
four fundamental perspectives. By discussing each of these
perspectives, our objective is to demonstrate the core princi-
ples that demonstrate the essence of the functional map. We
have already touched upon the first perspective, and now we
delve deeper into the rest of the three.

3.1. Four fundamental Perspectives
3.1.1 A Rank-k Approximation of a Point Map

Given our established understanding, the first perspective is
that a functional map is described as a rank-k approximation
of a point map. This is given by this equation:

C=3.P &, (7

3.1.2 Spectral Coefficients Translator

The second perspective can be seen by examining its input
and output vectors. For this, it’s helpful to compare it with
the more straightforward point map.

In a point map, the role is clear: it transfers functions be-
tween shapes. For the functional map, the process becomes
slightly more abstract, but effectively the same thing under
the hood:

¢ Input: The coefficient of some function to feed into a
basis matrix

e Output: The coefficient of some other function, com-
ing out of an inverse basis matrix

The inner workings of the functional map can be thought
of as a series of transformations:



1. First, the functional map receives a coefficient, recov-
ering it from spectral domain back to spatial domain:
a function.

2. This restored function is then transferred exactly by a
point map.

3. The transferred function is compressed back into a co-
efficient by the third transform.

While point maps and functional maps might appear dif-
ferent, they’re essentially the same thing. Both aim to trans-
fer functions between shapes just in different domain. Point
maps operate directly in the spatial domain, while func-
tional maps operate in the spectral domain, dealing with
function coefficients.

In simpler terms, think of a functional map as a trans-
lator. It takes function coefficients from one shape and
transfers into function coefficients on another. Consider
b= cﬂ -fianda = @; - fa, the relationship is given by:

fi=P-fo ¥
b=C-a )

3.1.3 Stack of Coefficients to the target basis functions

To understand functional maps further, we need to examine
the elements inside the matrix, especially the columns.

The columns within the matrix are themselves coeffi-
cients of something.

By looking at the definition again, when a point map is
applied to the second basis functions, it transfers these basis
functions to the first shape, which are then condensed into
coefficients by the basis of shape 1. Crucially, every column
of C represents the coefficients corresponding to each of the
target basis functions.

C=3.P 0, (10)
O =] (1n

3.1.4 Alignment Transformation between two Basis

Our final perspective brings us to the alignment. A func-
tional map aligns two bases. This interpretation becomes
more intuitive when we consider that the elements in C are
essentially coefficients of the target basis.

In matrix notation, this can be visualized as an expansion
of these coefficients into an aligned basis.

Py - C =Dy, 12)

This concludes the four fundamental perspectives on
functional maps. For a summary, see Figure 6.

b—C -a
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Figure 6. Four fundamental Perspectives of functional maps. Fig-
ure adapted from [1]

n/ 4’ ”(r ﬁd;
:‘ ' :/ L ‘_’:’

4

Figure 7. Top 5 LBO Basis functions of two different cats. From
TOSCA Dataset [9]

3.2. Properties of Functional Maps
3.2.1 Diagonal entries

A question that naturally arises when examining the func-
tional map is the noticeable diagonal pattern. What under-
lies this characteristic appearance?

Upon closer visual inspection in Figure 7, the answer
comes from the similarities found in the basis functions.
These functions exhibit great resemblances, either mirror-
ing each other closely or displaying near complete oppo-
sites. This characteristic alignment or opposition results in
the distinct diagonal form we observe. Indeed, the essence
of the functional map’s efficacy can be attributed to these
inherent properties of the basis functions.

3.2.2 Eigenfunctions of the Laplace-Beltrami Opera-
tor (LBO)

The Laplace-Beltrami Operator (LBO) (represented by
A)can be formally introduced here. Represented mathemat-
ically as:

A(f) = —=divV(f) [10] (13)

this operator is defined as the divergence of the gradient of
a function.
The eigenfunctions associated with the LBO are charac-
terized by:
Api = Nigi [10] (14)

Using discretizations for mesh surfaces, as proposed by
[11], the LBO is given by a large square and sparse matrix
with size of the number of vertices(represented by L). The
eigenfunctions are subsequently obtained by solving the



eigenvalues and eigenvectors (represented by \; and ¢;)of
this matrix, relative to a defined vertex mass(represented by
M). This can be mathematically expressed as:

Loi = AiMo; 5)

These eigenfunctions have the following important prop-
erties:

* Ordered based on their eigenvalues.

* Coarse to fine in scale, presenting a notion of fre-
quency.

¢ Inherently smooth in nature.

* Sensitive to perturbations. For instance, when two
eigenvalues are extremely close, even a slight defor-
mation could lead them to suddenly swap.

* Despite the above instability, the space spanned by
the top basis functions remains stable under near-
isometries. This stability under near-isometries is cru-
cial for the effectiveness of the functional map frame-
work.

3.2.3 General Functional Maps Definition

For a fixed choice of basis functions {¢™}, {4V}, and
a linear transformation 7 between functions, a functional
map is a matrix C, s.t. for any f = >, a;¢M if T(f) =
Do bi(b{\/, then:

b= Call0] (16)

Cij : coefficient of T (¢') in the basis of #N. Inan
orthonormal basis: Cy; = [ T (¢1) o2V dp

It’s important to understand that the scope of this defi-
nition is not confined merely to shape matching. Rather, it
provides a purely mathematical characterization of a func-
tional map applicable to any concept expressible in this lan-
guage. For example, there are extended applications of the
functional map framework in areas like image segmenta-
tion [12]. But they will not be covered by this report.

Intuitively, the high-level definition presented here reit-
erates the perspectives already introduced earlier: a func-
tional map matrix serves as a translator, it takes function
coefficients from one space(shape) and transfers into func-
tion coefficients on another.

3.2.4 Specific Functional Maps Definition for Shape
Matching

In the context of shape matching, which is our primary fo-
cus, the functional map can be formally defined as follows:

Given two shapes with nq, nas points and a map: P :
N — MP :nyXnpy matrix encoding the map P, one

1 per column with zeros everywhere else. If functions are
represented in the reduced basis: ® g : naq X kag matrix
of the first kn, eigenfunctions of Ay as columns. ®pr :
ny X ka matrix of the first kxs eigenfunctions of Ay as
columns. The functional map matrix:

C = cI)j\‘/PT@M *: left pseudo-inverse. [10]  (17)

It is noted that this definition here again reiterates the
perspectives we’ve previously explored. In essence, a func-
tional map can be seen as a rank-k approximation of a point
map.

3.2.5 Structure of the Functional Map Matrix

The structure of the functional map matrix reveals unique
patterns as observed in Figure 1:
Sparsity Pattern:

e The functional map is notably sparse, with over 94%
of its values falling below a threshold of 0.1.

* Most entries is located around the diagonal axis.

» Upon closer observation, the values exhibit a ”funnel-
shaped” pattern. This means that as it moves to higher
frequencies, the entries become increasingly perturbed
and chaotic.

High-frequency Perturbations:

* The irregularities observed in the high-frequency sec-
tions can be attributed to the swapping and instabilities
of high-frequency eigenfunctions.

» Despite these perturbations, the space spanned by the
eigenfunctions remains stable. This stability ensures
that the functional representation can effectively and
naturally encode such changes.

3.2.6 Accuracy of Functional Maps

To rigorously evaluate how accurately a functional map can
represent a point map, it becomes essential to employ a met-
ric. For this purpose, we turn our attention to the concept of
geodesic distance.

The geodesic distance measures the length of the shortest
path between two points on a manifold, with the constraint
that the path does not leave the manifold.

It’s important to emphasize the importance of this metric.
While two points may seem close in a traditional Euclidean
space, their intrinsic distance, measured by the geodesic
metric, may be considerably large. In context of shape
matching, we care for this intrinsic error.

A test was conducted where the average geodesic error
of the functional map representation underlining a ground
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Figure 8. Average geodesic error vs number of basis used for func-
tional map representation. Figure from [2]

truth point map was plotted against the number of basis
functions employed. Remarkably, as evidenced by the re-
sults, as few as 30 basis functions can offer a satisfactory
accuracy, aligning with our earlier introduced example seen
in Figure 1 and Figure 5. The plot showcases a clear pat-
tern: In the range of 0-20 basis, the reconstruction error sees
a rapid decline. After this range, the reduction rate slows
down, eventually plateauing. This trend, however, remains
predominantly monotonic: additional basis generally yields
improved accuracy.

In practical scenarios, a range of 20 to 100 basis proves
adequate for most applications. That said, with contempo-
rary advancements, researchers have came up with methods
to harness an even larger set of basis functions, pushing the
boundaries of accuracy in shape matching tasks.

3.2.7 Properties of Functional Maps

Functional maps have properties that, when understood and
utilized, can help improve the quality of mapping in various
applications.

Lemma 1: The mapping is isometric, if and only if the
functional map matrix commutes with the Laplacian:

CApm =AxC[10] (18)

Implies that isometries result in diagonal functional
maps.

Given that the Laplace Operator simplifies to a diagonal
matrix with its diagonal entries represented by the eigenval-
ues, this property suggests that isometric maps inherently
possess a diagonal structure.

Lemma 2: The mapping is locally volume preserving, if
and only if the functional map matrix is orthonormal. [10]

This can be interpreted to mean that ”good” mappings
exhibit orthonormal characteristics. With a foundational un-
derstanding that under optimal conditions, the basis func-

tions are orthonormal, a perfect point map is a permuta-
tion, which is also orthonormal, one can infer that func-
tional maps should also inherently be orthonormal.

These properties have important practical applications.
Researchers have harnessed these structural properties, us-
ing them as regularization mechanisms to refine and opti-
mize maps for better quality. Such properties have found
applications for example, in unsupervised loss functions
that is used in modern state-of-the-art pipelines [ 3].

3.2.8 Relationship with Rigid Alignment

In the early discussions of this report, we highlighted a his-
torical limitation in the domain of non-rigid shape match-
ing. Before the introduction of functional maps, the field
lacked a compact representation comparable to the 4x4 ro-
tation and translation matrix commonly employed in rigid
shape matching scenarios.

With the insights and knowledge gathered from our deep
dive into the fundamentals of functional maps, particularly
referencing the fourth perspective, we can now appreciate
the notion of alignment between two bases through func-
tional maps.

This understanding naturally positions us to compare
rigid alignment formulations to functional maps. At a foun-
dational level, functional maps can be thought of as the
spectral counterpart of rigid alignments. This implies that
while traditional rigid alignment techniques utilize a 4x4
matrix to transform xyz coordinates of points, functional
maps utilize a £ x k matrix to transform the spectral em-
beddings of points, i.e., the basis functions. Such formula-
tion reveals striking similarities, emphasizing their parallel
nature.

3.2.9 Visualizing Functional Maps as Alignments

A natural question arises when considering the visualization
of alignments: for rigid alignments between two shapes or
point clouds, the visualization is inherently intuitive due to
the coordinates representing actual points within our spa-
tial dimensions. Yet, how does one visualize the alignment
posed by a functional map? Given our physiological limita-
tions as three-dimensional beings, the prospect of visualiz-
ing beyond three dimensions is challenging.

Nevertheless, one can still extract a subset of three di-
mensions from the k£ dimensional embeddings associated
with the functional map. By treating these three dimen-
sions analogously to zyz coordinates, we can represent
them within our familiar Euclidean space. This method-
ology provides intriguing insights, as seen in Figure 9 and
Figure 10. Selecting and visualizing the top three basis or
embeddings offers a level of preservation of the shape’s in-
herent attributes. For instance, the silhouette of a human
figure or the tail of the cat. Exploring different choices of



Figure 9. Visualize Functional Maps as Alignments. Top 3 spec-
tral embeddings visualized as point cloud coordinates between two
shapes being matching via ICP. Figure from [10]
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Figure 10. Spectral embeddings of a human and a cat. From left
to right: top 1-3 basis, top 2-4 basis, top 3-5 basis, top 21-24 basis.
From TOSCA Dataset [9]

dimensions from the basis generates diverse patterns, with
complexity increasing as the frequency goes up as seen in
Figure 10. On a high level, one might conceptualize a func-
tional map as an alignment for these high-dimensional point
clouds, facilitated by a k x k rigid transformation matrix.

Reflecting on our introduction, the profound signifi-
cance of functional maps becomes evident: it has, for the
first time, presented a compact representation for non-rigid
shape matching that mirrors the precision and conciseness
of a rigid transformation matrix.

This novel approach has reduced the solution space for
the non-rigid shape matching problem from an N exponen-
tial solution space to a k X k matrix.

Furthermore, due to its formulation resemblance to the
rigid transformation, the same methods from rigid matching
problems can in turn be applied directly, as we can see in the
next section.

4. Applications

Since its introduction in 2012, functional maps have
gathered extensive attention over the past decade. They
have been applied, not only to shape matching problems but
also to areas such as shape interpolation [14] or even image
segmentation [12].

However, in the scope of this report, our primary focus
will remain on shape matching and map refinement meth-
ods. We aim to present a concise evolution of these tech-
niques, tracing their trajectory from their inception in 2012

2020

‘?‘ 2 I:{ ) 2018

Map Refinement

2012 3 ??/

Deep Funtional Maps

Figure 11. A selection of Applications of Functional Maps. [2]
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Figure 12. Improvement of the result from other methods via
Functional Map ICP. Figure from [2]

to the prevalent approaches of today.

4.1. Map Refinement
4.1.1 [Iterative Closest Point (ICP)

Building on our earlier discussion, it becomes clear that the
formulation of the functional map closely aligns with that
of rigid alignment. This resemblance provides a unique ad-
vantage, enabling the direct application of existing method-
ologies to the problems of non-rigid shape matching.

One such technique that can be seamlessly applied is the
Iterative Closest Point (ICP) method for refining functional
maps. The algorithm remains identical to its implementa-
tion in the rigid scenario: it iterates between determining
point correspondences and updating the compact transfor-
mation matrix.

A visual representation of this process is provided in Fig-
ure 9.

In its early application in 2012, this straightforward tech-
nique was overlaid on top of some other state-of-the-art
methods [3] [4] of the time. Remarkably, even such a simple
incorporation led to substantial improvements in the perfor-
mance of pre-existing methods.

4.1.2 Evolution of ICP: From BCICP to ZoomOut

As we trace the evolution of the ICP method up to the
present day, more intricate methods have been proposed to
leverage various structural properties, enhancing the refine-
ment mechanism. One such noteworthy contribution was
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Figure 13. ZoomOut result compared to ICP. Figure from [16]

the 2018 paper named as BCICP [18], which incorporated
several complex techniques to refine the mappings.

What’s more remarkable however, in 2019, a simpler
and more efficient method named ZoomOut [16] rapidly
gathered interest in the research community. This ap-
proach yielded comparable refinement results and was more
computationally efficient than BCICP [18]. Even today,
ZoomOQOut remains a preferred choice for many when refin-
ing mappings derived from contemporary pipelines.

The essence of ZoomOut parallels the ICP methodology
with one single exception: the iterative process has in ad-
dition a spectral upsampling of the basis numbers used, i.e.
increasing the spectral resolution during iterations.

While ZoomOut’s simplicity is a significant advantage,
its performance notably surpasses that of the elementary
ICP and rivals the BCICP method. The underlying intu-
ition is intriguing. Instead of emphasizing the whole func-
tional map matrix to adopt orthonormal or diagonal struc-
tural properties, the spectral upsampling ensures that each
sub-matrix embedded within the map matrix satisfy the de-
sired properties. Refer to Figure 13 for a comparative re-
sults of ZoomOut against ICP. For a more in-depth analy-
sis, readers are referred to the original ZoomOut publica-
tion [16].

Subsequent to ZoomOut, more advanced iterations have
been proposed, such as the Consistent ZoomOut [19]. How-
ever, the scope of this report does not extend to these more
advanced developments.

4.2. Shape Matching with Functional Maps

Within the domain of shape matching that utilizes func-
tional maps, methods can be very roughly divided into two
primary categories: axiomatic methods (eg. smooth shells
[20] ) and deep functional maps. This report primarily
delves into the deep functional map paradigm.

The foundational setup for deep functional maps is
straightforward. It relies on the function preservation prop-
erty, specifically that a functional map primarily serves as a
translator of coefficients.

A Basic pipeline goes as follows [2] [10]: Given a pair

Geodesic Error

(b) TOSCA

Geodosic Error

(a) SCAPE

Figure 14. Comparision of a basic shape matching pipeline using
functional maps with other state-of-the-art methods from 2012 [3]
[4]. Figure from [2]

of shapes M, N :

1. Compute the first k(~ 80 — 100) eigenfunctions
of the LaplaceBeltrami operator. Store them in matrices:
D g, Par 2. Compute descriptor functions (e.g., Wave Ker-
nel Signature) on M, N. Express them in @, P, as
columns of : A, B 3. Solve Co, = argmin|[CA — B|* +

c

|CAM — ANCH2 A, Ay diagonal matrices of eigen-
values of LB operator 4. Convert the functional map Cop
to a point to point map P.

On a high level, the features can either be sourced from
traditional geometric descriptors, for example, HKS [21],
or WKS [22], or could be from refined features generated
by deep learning networks.

Afterwards these features are projected onto the spectral
basis, thereby transforming into coefficients.

Leveraging the function preservation property, the pro-
cess of deriving the functional map essentially becomes a
linear solve, in addition to some regularization techniques
mentioned earlier.

4.2.1 Results from 2012

In 2012, this very basic setup has been tested, using only tra-
ditional geometric descriptors and compared with the state-
of-the-art methods at the time [3] [4], the results, as seen
from Figure 14, demonstrated that even this basic procedure
yielded results that could be arguably considered better.

It’s important to highlight the difference between solving
a functional map in the spectral domain versus directly solv-
ing a point map from point features. The former has a more
compact solution space. Additionally, the lower frequency
basis components intrinsically exhibit a low-pass filter ef-
fect, naturally having a smoothing effect for the matches.
This highlights the important role of functional maps within
such pipelines.

4.2.2 Deep Functional Maps: 2017-Present

From 2017 to the present day, one of the most popular de-
velopments in shape matching domain has been the rise of
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Figure 15. Common pipeline of deep functional map methods.
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deep functional map methods. These techniques are achiev-
ing state-of-the-art results in present days.

The basic paradigm of these methods has largely re-
mained straightforward. The primary focus of these meth-
ods has been mainly geared towards improving the feature
extractors and optimizing the objectives with careful con-
siderations for the loss function.

To present a concise evolution without delving into ex-
haustive details, we select a subset of works:

* In 2017, the first deep functional map method was in-
troduced [15].

* In 2020, an important regularization component for the
FM solution was realized and recognized by the com-
munity [17].

* This recognition subsequently led to more explorations
on regularization masks for FM solution in [23], and
was adapted in [24] and most future subsequent works
of deep functional map methods.

e In 2022, the dominant feature extractor emerged as the
gold standard nowadays for shape surface learning [!].

4.2.3 2023: Current State-of-the-Art in Deep Func-
tional Map Methods

The current state-of-the-art deep functional map method as
proposed by [13] can be seen as a culmination of all preced-
ing foundational works. However, it still distinguishes itself
by introducing simple yet effective improvements.

It is worth noting that, techniques that are both straight-
forward and effective usually gain more public attentions.
In the course of this report, we covered two such works:
the functional map representation [2] and the ZoomQOut ap-
proach [16]. And this work arguably exhibits a similar sim-
plicity and efficacy to those.

To provide a concise highlight of its contributions:

1. Integration of point maps with functional maps.
This combination has enhanced matching performance
along with improvements in surprising aspects.

Partiality tr Non-i y T ical Noise

Figure 16. Examples of failure modes from [13]

2. One of such aspects is the stabilization effect in higher
spectral resolutions. This has enabled consistent per-
formance enhancement while increasing the number of
bases utilized. Thus, deep functional map methods can
now harness up to 200 basis functions and potentially
even more.

For a comprehensive overview and detailed evaluation met-
rics, the reader is referred to [13].

In light of the recent advancements, one could argue that
the challenge of non-rigid matching, particularly in scenar-
i0s of near-isometries, has now been well-established.

5. Limitations and Discussions

While deep functional map methods have shown signifi-
cant results, it is interesting to see the scenarios where these
methods still fail as shown in Figure 16, such as partial-
ity, extreme non-isometry, and the presence of topological
noise.

A notable illustration of non-isometric failure is the chal-
lenge of matching largely different animals, such as an ele-
phant and a giraffe. Without any landmarks or semantic
cues, relying solely on geometric data would be challeng-
ing. There has emerging interest in integrating semantic
knowledge, harnessing the capabilities of large language
models, to aid in shape matching such as [25].

Further complications arise with functional map meth-
ods when addressing non-rigid, noisy point clouds. These
often exhibit partiality, topological noise, and extreme out-
liers. Such factors compromise the stability of the LBO
eigenfunctions. While some work has proposed a more ro-
bust formulation of the Laplacian [26], some has proposed
to learn basis functions directly with neural networks [27]
[28], the space for improvements is still large.

Moreover, more investigations into unsupervised losses
could be interesting.



6. Conclusions

This report covered an introductory perspective on the
functional map representation, aimed at equipping readers
with an intuitive understanding. Four fundamental perspec-
tives were covered: a rank-k approximation of a point map,
spectral coefficient translator, coefficients of the target ba-
sis, and alignment transformation between bases. By com-
paring the functional map formulation with the rigid sce-
nario, we can understand its significance in limiting the so-
lution space closely to a rigid transformation matrix. This
results in a compact, linear, and flexible representation for
non-rigid shape matching.

In addition, we covered a variety of applications for
functional maps, such as ZoomOut [16], and the deep
functional map families [13]. With the advancements in
these methodologies, near-isometric shape matching is ar-
guably considered as well-established. However, chal-
lenges remain in scenarios with partiality, extreme non-
isometry, topological noise, and noisy point clouds, opening
up spaces for more explorations.
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