Hybrid Functional Maps

for Crease-Aware Non-Isometric Shape Matching

Lennart Bastian* Yizheng Xie* Nassir Navab Zorah Lähner

Bastian, L., Xie, Y., Navab, N., & Lähner, Z. (2023). Hybrid Functional Maps for Crease-Aware Non-Isometric Shape Matching. arXiv preprint arXiv:2312.03678.

Background Work

Alians Bases

Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., & Guibas, L. (2012). Functional maps: a flexible representation of maps between shapes. ACM Transactions

on Graphics (ToG), 31(4), 1-11. Sharp, N., Attaiki, S., Crane, K., & Ovsjanikov, M. (2022). Diffusionnet: Discretization agnostic learning on surfaces. ACM Transactions on Graphics (TOG), 41(3), 1-16.

Rigid Alignment

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).⁷

Rigid Alignment

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).⁸

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).⁹

Rigid Alignment

Non-rigid, can we have a similarly compact representation?

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).¹⁰

Compact Representation

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).¹¹

Rigid Alignment

Point to Point, NP hard Problem

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).¹²

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).¹³

Fourier Image analysis:

Discretized 2D Grid / Image

Rippel, O., Snoek, J., & Adams, R. P. (2015). Spectral representations for convolutional neural networks. *Advances in neural information processing systems*, 28.

Image compression:

Truncated coefficients to only low frequency

From an image, project to spectral coefficients

From coefficients to reconstructed image

ТШ

youtube.com/brusspup

https://youtu.be/wvJAgrUBF4w

Chladni plate patterns

https://youtu.be/wvJAgrUBF4w

Eigenfunctions of the Laplace-Beltrami Operator

LBO Basis functions are defined for any shape surface

https://brickisland.net/DDGSpring2021/2021/04/20/lecture-18-the-laplace-beltrami-operator/

P.,

۰.

.

.

.

-

A functional map is a rank-k approximation of a point map

A functional map is a rank-k approximation of a point map

Accuracy of the Functional Map

Average mapping error vs. number of basis used

 In practice, somewhere between 20 to 100 basis are sufficient

Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., & Guibas, L. (2012). Functional maps: a flexible representation of maps between shapes. *ACM Transactions on Graphics (ToG)*, 31(4), 1-11.

A point map transfer functions between two shapes

A functional map translates coefficients of functions between two shapes

A point map transfer functions between two shapes

A functional map translates coefficients of functions between two shapes

 $\mathbf{b} = \mathbf{C} \cdot \mathbf{a}$

 $\mathrm{C}=\Phi_1^\dagger\cdot\Phi_{2a}$

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).³⁴

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).³⁵

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In *SIGGRAPH ASIA 2016 Courses* (pp. 1-60).³⁶

Iterative Closest Point

ТЛП

https://www.youtube.com/watch?v=uzOCS_gdZuM

Melzi, S., Ren, J., Rodola, E., Sharma, A., Wonka, P., & Ovsjanikov, M. (2019). Zoomout: Spectral upsampling 39 for efficient shape correspondence. *arXiv preprint arXiv:1904.07865*.

Ovsjanikov, M., Corman, E., Bronstein, M., Rodolà, E., Ben-Chen, M., Guibas, L., ... & Bronstein, A. (2016). Computing and processing correspondences with functional maps. In SIGGRAPH ASIA 2016 Courses (pp. 1-60).⁴⁰
Functional Maps

Approximation of Point Map

linear, compact and flexible

Translates coefficients

Aligns Bases

What is the magic?

Eigenfunctions of Laplace-Beltrami Operator

Invariance under non-rigid isometric deformations

Basis functions exhibit similar patterns, which can be matched

isometric

What is the magic?

Basis functions exhibit similar patterns, which can be matched

Non-isometric

What is the magic?

Basis functions exhibit similar patterns, which can be matched

Non-isometric

Functional Maps [Ovsjanikov et al. 2012]

Melzi, Simone, Jing Ren, Emanuele Rodola, Abhishek Sharma, Peter Wonka, and Maks Ovsjanikov. "Zoomout: Spectral upsampling for efficient shape correspondence." arXiv preprint arXiv:1904.07865 (2019).

axiomatic

ZoomOut [Melzi et al. 2019]

Melzi, Simone, Jing Ren, Emanuele Rodola, Abhishek Sharma, Peter Wonka, and Maks Ovsjanikov. "Zoomout: Spectral upsampling for efficient shape correspondence." *arXiv preprint arXiv:1904.07865* (2019).

axiomatic

ZoomOut [Melzi et al. 2019]

Smooth Shells [Eisenberger et al. 2020]

Eisenberger, Marvin, Zorah Lahner, and Daniel Cremers. "Smooth shells: Multi-scale shape registration with functional maps." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

axiomatic

Smooth Shells [Eisenberger et al. 2020]

supervised

GeomFmaps [Donati et al. 2020]

Donati, Nicolas, Abhishek Sharma, and Maks Ovsjanikov. "Deep geometric functional maps: Robust feature learning for shape correspondence." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

supervised

unsupervised

axiomatic

GeomFmaps [Donati et al. 2020] ZoomOut [Melzi et al. 2019] Smooth Shells [Eisenberger et al. 2020] ULRSSM [Cao et al. 2023] Cao, D., Roetzer, P., & Bernard, F. (2023). Unsupervised learning of robust spectral shape matching. ACM Transactions on Graphics (TOG). https://doi.org/10.1145/3592107

supervised

unsupervised

axiomatic

GeomFmaps [Donati et al. 2020] ZoomOut [Melzi et al. 2019] Smooth Shells [Eisenberger et al. 2020] ULRSSM [Cao et al. 2023] Cao, D., Roetzer, P., & Bernard, F. (2023). Unsupervised learning of robust spectral shape matching. ACM Transactions on Graphics (TOG). https://doi.org/10.1145/3592107

- Non-orthogonal Basis
- Generalized FMap Framwork

An Elastic Basis [Hartwig et al. 2023]

Hartwig, F., Sassen, J., Azencot, O., Rumpf, M., & Ben-Chen, M. (2023, July). An Elastic Basis for Spectral Shape Correspondence. In ACM SIGGRAPH 2023 Conference Proceedings (pp. 1-11).

An Elastic Basis

Elastic Energy

membrane contribution (intrinsic)

bending contribution (extrinsic)

 $\mathcal{W}_{\mathcal{S}}[\psi] = \mathcal{W}_{\text{mem}}[\psi] + \mathcal{W}_{\text{bend}}[\psi],$ for a deformation $\psi \in (\mathcal{F}(\mathcal{S}))^3$

projected eigenmodes of Hess W_S eigenmodes of Δ_{S_1}

An Elastic Basis [Hartwig et al. 2023]

An Elastic Basis [Hartwig et al. 2023]

 $\operatorname{Hess} \mathcal{W}_{\mathcal{S}}[\operatorname{Id}]$

Hartwig, F., Sassen, J., Azencot, O., Rumpf, M., & Ben-Chen, M. (2023, July). An Elastic Basis for Spectral Shape Correspondence. In ACM SIGGRAPH 2023 Conference Proceedings (pp. 1-11).

solutions of the eigenfunction problem

Hess $\mathcal{W}_{\mathcal{S}}[\mathrm{Id}]\psi_i = \lambda_i \psi_i$ [Hildebrandt et al. 2010]

An Elastic Basis [Hartwig et al. 2023]

ТΠ

An Elastic Basis

Hartwig, F., Sassen, J., Azencot, O., Rumpf, M., & Ben-Chen, M. (2023, July). An Elastic Basis for Spectral Shape Correspondence. In ACM SIGGRAPH 2023 Conference Proceedings (pp. 1-11).

An Elastic Basis

solutions of the eigenfunction problem $\operatorname{Hess} \mathcal{W}_{\mathcal{S}}[\operatorname{Id}]\psi_i = \lambda_i \psi_i$

[Hildebrandt et al. 2010]

An Elastic Basis [Hartwig et al. 2023]

An Elastic Basis [Hartwig et al. 2023]

projection on vertex normals

 $\phi_i \in \mathcal{F}(\mathcal{S})$

 $\phi_1, \phi_2, \ldots,$ not orthogonal

-1

An Elastic Basis [Hartwig et al. 2023]

Elastic Basis: extrinsic aware

- Non-orthogonal Basis
- Generalized FMap Framework

An Elastic Basis [Hartwig et al. 2023]

 $\Phi_k^T M \Phi_k = I$

Mass matrix w.r.t. the reduced basis

 $\Phi_k^T M \Phi_k = M_k$

 $\Phi_k^T M \Phi_k = I$

Mass matrix w.r.t. the reduced basis

$$\Phi_k^T M \Phi_k = M_k$$

$$f=\Phi_k x \qquad g=\Phi_k y$$

 $=(\Phi_k x)^T M(\Phi_k y)$

 $\langle f,g
angle_M=f^TMg$

 $= x^T y$

Scalar dot product

$$f=\Phi_k x \qquad g=\Phi_k y$$

 $egin{aligned} \langle f,g
angle_M&=f^TMg\ &=(\Phi_kx)^TM(\Phi_ky) \end{aligned}$

$$= x^T M_k y$$

$$egin{aligned} \Phi_k^\dagger &= (\Phi_k^T M \Phi_k)^{-1} \Phi_k^T M \ &= \Phi_k M \end{aligned}$$

Pseudo-inverse

 $egin{aligned} \Phi_k^\dagger &= (\Phi_k^T M \Phi_k)^{-1} \Phi_k^T M \ &= M_k^{-1} \Phi_k M \end{aligned}$

$$C_{12}=\Phi_1^\dagger P_{12}\Phi_2$$

Functional Map

$$C_{12}=\Phi_1^\dagger P_{12}\Phi_2$$

$$egin{aligned} &\langle x,C_{12}y
angle = \langle C_{12}^*x,y
angle \ &C_{12}^*=C_{12}^T \end{aligned}$$

Adjoint

$$egin{aligned} &\langle x, C_{12}y
angle_{M_{1,k}} = \langle C^*_{12}x, y
angle_{M_{2,k}} \ &C^*_{12} = M^{-1}_{2,k}C^T_{12}M_{1,k} \end{aligned}$$

$$\|C_{12}\|_F^2 = \operatorname{tr}(C_{12}^T C_{12})$$

Operator Norm

$$egin{aligned} \|C_{12}\|^2_{HS} &= ext{tr}(C^*_{12}C_{12})\ &= \|M^{rac{1}{2}}_{1,k}C_{12}M^{-rac{1}{2}}_{2,k}\|^2_F \end{aligned}$$

Frobenius Norm

Hilbert-Schmidt Norm

 $\|C_{12}\|_F^2 = \operatorname{tr}(C_{12}^T C_{12})$

 $\|C_{12}\|_{M_{2,k}}^2 = tr(M_{2,k})$

Frobenius Norm

Operator Norm

$$egin{aligned} C_{12} \|_{HS}^2 &= \operatorname{tr}(C_{12}^*C_{12}) \ &= \| M_{1,k}^rac{1}{2} C_{12} M_{2,k}^{-rac{1}{2}} \|_F^2 \end{aligned}$$

Hilbert-Schmidt Norm

$$\|C_{12}\|_{HS}^2 = tr(M_{2,k}^{-1}M_{1,k})$$

Generalized FMap Framework adapted to ZoomOut

 $\|C_{12}C_{12}^T - I\|_F$

Correspondence 1. $\Phi_2 C_{12}^T$ Φ_1

Via Nearest Neighbor Search

Functional Map 2.

$$C_{12}=\Phi_1^\dagger P_{12}\Phi_2$$

ZoomOut Objective

ZoomOut

$$\|C_{12}C_{12}^*-I\|_{HS}$$

Generalized FMap Framework adapted to ZoomOut

Generalized FMap Framework adapted to ZoomOut

Challenge

crease-similar

Solution

TODO:GT Reconst title: 60 vs 60 vs 40_20basis

Choice of Hybrid Basis Top k Basis

Can it work in the learned setting?

An Elastic Basis [Hartwig et al. 2023]

ZoomOut [Melzi et al. 2019]

Smooth Shells [Eisenberger et al. 2020]

GeomFmaps [Donati et al. 2020]

ULRSSM [Cao et al. 2023]

Classical Deep Functional Map Pipeline

Hybrid Deep Functional Map Pipeline

$$egin{aligned} C^* &= rg\min_{C} E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Phi_1} - D_{\Phi_2}\|_F^2 \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|_F^2 \end{aligned}$$

Linear Operators Commutativity: Standard Laplacian or Resolvent

Standard Laplacian.

$$egin{aligned} C^* &= rg\min_{C} E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Psi_1} - D_{\Psi_2}\|^2_{M_{k,2}} \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|^2_{HS} \end{aligned}$$

Resolvent

ТΠ

$$C^* = rg \min_C E(C) = E_{
m data}(C) + \lambda E_{
m reg}(C)
onumber \ E_{
m data}(C) = \|CD_{\Phi_1} - D_{\Phi_2}\|_F^2
onumber \ E_{
m reg}(C) = \|C\Lambda_1 - \Lambda_2 C\|_F^2$$

$$egin{aligned} C^* &= rg\min_C E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Psi_1} - D_{\Psi_2}\|^2_{M_{k,2}} \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|^2_{HS} \end{aligned}$$

$$egin{aligned} A &= D_{\Phi_1} \ B &= D_{\Phi_2} \ \Delta_{ij} &= (\Lambda_1(j) - \Lambda_2(i))^2 \end{aligned}$$

 $CAA^{T} + \lambda \Delta \cdot C = BA^{T}$ $(AA^{T} + \lambda \operatorname{diag}(\Lambda_{1}(j) - \Lambda_{2}(i))^{2})c_{i} = Ab_{i}$ Solve for C row wise, result in solving k times $k \times k$ linear system

$$egin{aligned} C^* &= rg\min_C E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Phi_1} - D_{\Phi_2}\|_F^2 \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|_F^2 \end{aligned}$$

$$egin{aligned} A &= D_{\Phi_1} \ B &= D_{\Phi_2} \ \Delta_{ij} &= (\Lambda_1(j) - \Lambda_2(i))^2 \end{aligned}$$

 $CAA^T + \lambda \Delta \cdot C = BA^T$

 $(AA^T+\lambda {
m diag}(\Lambda_1(j)-\Lambda_2(i))^2)c_i=Ab_i$

$$egin{aligned} C^* &= rg\min_C E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Psi_1} - D_{\Psi_2}\|^2_{M_{k,2}} \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|^2_{HS} \end{aligned}$$

$$\begin{split} \|CD_{\Psi_1} - D_{\Psi_2}\|_{M_{k,2}} &= \|\sqrt{M_{k,2}}(CD_{\Psi_1} - D_{\Psi_2})\|_F \\ \|C\Lambda_1 - \Lambda_2 C\|_{HS} &= \|\sqrt{M_{k,2}}(C\Lambda_1 - \Lambda_2 C)\sqrt{M_{k,1}^{-1}}\|_F \\ \operatorname{vec}(ABC) &= \left(C^\top \otimes A\right)\operatorname{vec}(B) \end{split}$$

$$\begin{split} &\|\sqrt{M_{k,2}}(CD_{\Psi_1} - D_{\Psi_2})\|_F \\ &= \|vec(\sqrt{M_{k,2}}CD_{\Psi_1}) - vec(\sqrt{M_{k,2}}D_{\Psi_2}))\|_2 \\ &= \|((\sqrt{M_{k,2}}D_{\Psi_1})^\top \otimes I)vec(C) - vec(\sqrt{M_{k,2}}D_{\Psi_2})\|_2 \end{split}$$

пп

$$egin{aligned} C^* &= rg\min_C E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Phi_1} - D_{\Phi_2}\|_F^2 \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|_F^2 \end{aligned}$$

$$egin{aligned} A &= D_{\Phi_1} \ B &= D_{\Phi_2} \ \Delta_{ij} &= (\Lambda_1(j) - \Lambda_2(i))^2 \end{aligned}$$

 $CAA^T + \lambda \Delta \cdot C = BA^T$

 $(AA^T+\lambda {
m diag}(\Lambda_1(j)-\Lambda_2(i))^2)c_i=Ab_i$

$$egin{aligned} C^* &= rg\min_C E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Psi_1} - D_{\Psi_2}\|^2_{M_{k,2}} \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|^2_{HS} \end{aligned}$$

$$\begin{aligned} \|CD_{\Psi_1} - D_{\Psi_2}\|_{M_{k,2}} &= \|\sqrt{M_{k,2}}(CD_{\Psi_1} - D_{\Psi_2})\|_F \\ \|C\Lambda_1 - \Lambda_2 C\|_{HS} &= \|\sqrt{M_{k,2}}(C\Lambda_1 - \Lambda_2 C)\sqrt{M_{k,1}^{-1}}\|_F \end{aligned}$$

$$\operatorname{vec}(ABC) = \left(C^{ op}\otimes A
ight)\operatorname{vec}(B) \ \|\sqrt{M_{k,2}}\left(C\Lambda_1 - \Lambda_2 C
ight)\sqrt{M_{k,1}}\|_{\mathrm{F}}^2 \ = \|\left((\Lambda_1\sqrt{M_{k,1}^{-1}})\otimes\sqrt{M_{k,2}} -
ight)$$

 $\sqrt{M_{k,1}^{-1}}\otimes (\sqrt{M_{k,2}}\Lambda_2)) ext{vec}(C)\|_F^2$

$$C^* = rg \min_C E(C) = E_{
m data}(C) + \lambda E_{
m reg}(C)
onumber \ E_{
m data}(C) = \|CD_{\Phi_1} - D_{\Phi_2}\|_F^2
onumber \ E_{
m reg}(C) = \|C\Lambda_1 - \Lambda_2 C\|_F^2$$

$$egin{aligned} A &= D_{\Phi_1} \ B &= D_{\Phi_2} \ \Delta_{ij} &= (\Lambda_1(j) - \Lambda_2(i))^2 \end{aligned}$$

 $egin{aligned} C^* &= rg\min_C E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Psi_1} - D_{\Psi_2}\|^2_{M_{k,2}} \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|^2_{HS} \end{aligned}$

$$egin{aligned} &A = (\sqrt{M_{k,2}} D_{\Psi_1})^{ op} \otimes I \ &B = \sqrt{M_{k,2}} D_{\Psi_2} \ &\zeta = (\Lambda_1 \sqrt{M_{k,1}^{-1}}) \otimes \sqrt{M_{k,2}} - \sqrt{M_{k,1}^{-1}} \otimes (\sqrt{M_{k,2}} \Lambda_2) \end{aligned}$$

 $CAA^T + \lambda \Delta \cdot C = BA^T$

 $(A^ op A + \lambda \zeta^ op \zeta) vec(C) = A^ op vec(B)$

 $(AA^T+\lambda {
m diag}(\Lambda_1(j)-\Lambda_2(i))^2)c_i=Ab_i$

$$egin{aligned} C^* &= rg\min_{C} E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Phi_1} - D_{\Phi_2}\|_F^2 \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|_F^2 \end{aligned}$$

$$A = D_{\Phi_1}$$

$$B = D_{\Phi_2}$$

$$\Delta_{ij} = (\Lambda_1(j) - \Lambda_2(i))^2$$

Solve for C using Kronecker product
and vectorizations, results in a single

$$k^2 \times k^2 \text{linear system}$$

$$egin{aligned} C^* &= rg\min_{C} E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ &E_{ ext{data}}(C) = \|CD_{\Psi_1} - D_{\Psi_2}\|^2_{M_{k,2}} \ &E_{ ext{reg}}(C) = \|C\Lambda_1 - \Lambda_2 C\|^2_{HS} \end{aligned}$$

$$egin{aligned} &A = (\sqrt{M_{k,2}} D_{\Psi_1})^ op \otimes I \ &B = \sqrt{M_{k,2}} D_{\Psi_2} \ &\zeta = (\Lambda_1 \sqrt{M_{k,1}^{-1}}) \otimes \sqrt{M_{k,2}} - \sqrt{M_{k,1}^{-1}} \otimes (\sqrt{M_{k,2}} \Lambda_2) \end{aligned}$$

$$(A^ op A + \lambda \zeta^ op \zeta) vec(C) = A^ op vec(B)$$

 $(AA^T+\lambda {
m diag}(\Lambda_1(j)-\Lambda_2(i))^2)c_i=Ab_i$

ТП

$$egin{aligned} C^* &= rg\min_C E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Phi_1} - D_{\Phi_2}\|_F^2 \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|_F^2 \end{aligned}$$

$$egin{aligned} C^* &= rg\min_C E(C) = E_{ ext{data}}(C) + \lambda E_{ ext{reg}}(C) \ E_{ ext{data}}(C) &= \|CD_{\Psi_1} - D_{\Psi_2}\|^2_{M_{k,2}} \ E_{ ext{reg}}(C) &= \|C\Lambda_1 - \Lambda_2 C\|^2_{HS} \end{aligned}$$

Solve for C row wise, result in solving k times $k \times k$ linear system

Solve for C using Kronecker product and vectorizations, results in a single $k^2 \times k^2$ linear system

For k < 100, this is still feasible

For k > 100, prohibitively expensive

99

Motivations:

1. Regularization

Motivations:

1. Regularization

Motivations:

1. Regularization

2. Computation

Solve for C using Kronecker product and vectorizations, results in a single $k^2 \times k^2$ linear system For k < 100, this is feasible

For k > 100, prohibitively expensive

$$\mathcal{L}_{ ext{LB}} = \|C - C_{ ext{gt}}\|_{ ext{F}}^2$$

$$egin{aligned} \mathcal{L}_{ ext{Elas}} &= \|C - C_{ ext{gt}}\|_{ ext{HS}}^2 \ &= \|\sqrt{M_{k,2}}(C - C_{ ext{gt}})\sqrt{M_{k,1}^{-1}}\|_F^2 \end{aligned}$$

GeomFmaps [Donati et al. 2020]

Donati, Nicolas, Abhishek Sharma, and Maks Ovsjanikov. "Deep geometric functional maps: Robust feature learning for shape correspondence." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020. 105

$$egin{split} \mathcal{L}_{ ext{orth}} &= \|C_{12}^*C_{12} - I\|_F^2 + \|C_{21}^*C_{21} - I\|_F^2 \ L_{ ext{bij}} &= \|C_{12}C_{21} - I\|_F^2 + \|C_{21}C_{12} - I\|_F^2 \ \mathcal{L}_{ ext{couple}} &= \left\|C_{12} - \Phi_2^\dagger \Pi_{21} \Phi_1
ight\|_F^2 + \left\|C_{21} - \Phi_1^\dagger \Pi_{12} \Phi_2
ight\|_F^2 \end{split}$$

$$egin{split} \mathcal{L}_{ ext{orth}} &= \| C_{12}^* C_{12} - I \|_{HS}^2 + \| C_{21}^* C_{21} - I \|_{HS}^2 \ L_{ ext{bij}} &= \| C_{12} C_{21} - I \|_{HS}^2 + \| C_{21} C_{12} - I \|_{HS}^2 \ \mathcal{L}_{ ext{couple}} &= \left\| C_{12} - \Psi_2^\dagger \Pi_{21} \Psi_1
ight\|_{ ext{HS}}^2 + \left\| C_{21} - \Psi_1^\dagger \Pi_{12} \Psi_2
ight\|_{ ext{HS}}^2 \end{split}$$

ULRSSM [Cao et al. 2023]

Cao, D., Roetzer, P., & Bernard, F. (2023). Unsupervised learning of robust spectral shape matching. ACM Transactions on Graphics (TOG). https://doi.org/10.1145/3592107

$$egin{split} \mathcal{L}_{ ext{orth}} &= \|C_{12}^*C_{12} - I\|_F^2 + \|C_{21}^*C_{21} - I\|_F^2 \ L_{ ext{bij}} &= \|C_{12}C_{21} - I\|_F^2 + \|C_{21}C_{12} - I\|_F^2 \ \mathcal{L}_{ ext{couple}} &= \left\|C_{12} - \Phi_2^\dagger \Pi_{21} \Phi_1
ight\|_F^2 + \left\|C_{21} - \Phi_1^\dagger \Pi_{12} \Phi_2
ight\|_F^2 \end{split}$$

$$egin{split} \mathcal{L}_{ ext{orth}} &= \|C_{21}^*C_{21} - I\|_F^2 + \|C_{12}^*C_{12} - I\|_F^2 \ L_{ ext{bij}} &= \|C_{12}C_{21} - I\|_F^2 + \|C_{21}C_{12} - I\|_F^2 \ \mathcal{L}_{ ext{couple}} &= \left\|\sqrt{M_{k,2}}(C_{12} - \Psi_2^\dagger \Pi_{21}\Psi_1)\sqrt{M_{k,1}^{-1}}
ight\|_F^2 \ &+ \left\|\sqrt{M_{k,1}}(C_{21} - \Psi_1^\dagger \Pi_{12}\Psi_2)\sqrt{M_{k,2}^{-1}}
ight\|_F^2 \end{split}$$

ULRSSM [Cao et al. 2023]

Cao, D., Roetzer, P., & Bernard, F. (2023). Unsupervised learning of robust spectral shape matching. ACM Transactions on Graphics (TOG). https://doi.org/10.1145/3592107

Implementation Details

Final Total Loss:

• Normalizing Factors

109

2000 iters

 $\mathcal{L}_{\text{total}} = \alpha \mathcal{L}_{\text{LB}} + \mu \beta \mathcal{L}_{\text{Elas}}$

Normalizing Factor

Final Total Loss:

Implementation Details

That's everything

Results: it works

Smooth Shells [Eisenberger et al. 2020]

Axiomatic

		FAUST	SCAPE	SHREC'19 [†]	SMAL	DT4D-H		TOPKIDS
						intra-class	inter-class	
Axiomatic	ZoomOut [33]	6.1	7.5	-	38.4	4.0	29.0	33.7
	DiscreteOp [41]	5.6	13.1	-	38.1	3.6	27.6	35.5
	Smooth Shells [16]	2.5	4.2	-	30.0	1.1	6.3	10.8
	Hybrid Smooth Shells (ours)	2.6	4.2	-	28.4	X	Х	7.5
Sup.	FMNet [27]	11.0	33.0	-	42.0	9.6	38.0	-
	GeomFMaps [13]	2.6	3.0	7.9	8.4	2.1	4.3	-
	Hybrid GeomFMaps (ours)	2.4	2.8	5.6	7.6	2.3	4.2	-
Unsupervised	Deep Shells [17]	1.7	2.5	21.1	29.3	3.4	31.1	13.7
	DUO-FMNet [15]	2.5	4.2	6.4	6.7	2.6	15.8	-
	AttentiveFMaps-Fast [25]	1.9	2.1	6.3	5.8	1.2	14.6	28.5
	AttentiveFMaps [25]	1.9	2.2	5.8	5.4	1.7	11.6	23.4
	SSCDFM [48]	1.7	2.6	3.8	5.4	1.2	6.1	-
	ULRSSM [10]	1.6	1.9	4.6	3.9	0.9	4.1	9.2
	Hybrid ULRSSM (ours)	1.4	1.8	4.1	3.3	1.0	3.5	5.1

Eisenberger, Marvin, Zorah Lahner, and Daniel Cremers. "Smooth shells: Multi-scale shape registration with functional maps." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

Results: it works

GeomFmaps [Donati et al. 2020]

Supervised Learning

		FAUST	SCAPE	SHREC'19 [†]	SMAL	DT4D-H		TOPKIDS
						intra-class	inter-class	
Axiomatic	ZoomOut [33]	6.1	7.5	-	38.4	4.0	29.0	33.7
	DiscreteOp [41]	5.6	13.1	-	38.1	3.6	27.6	35.5
	Smooth Shells [16]	2.5	4.2	-	30.0	1.1	6.3	10.8
	Hybrid Smooth Shells (ours)	2.6	4.2	-	28.4	X	X	7.5
Sup.	FMNet [27]	11.0	33.0	-	42.0	9.6	38.0	-
	GeomFMaps [13]	2.6	3.0	7.9	8.4	2.1	4.3	-
	Hybrid GeomFMaps (ours)	2.4	2.8	5.6	7.6	2.3	4.2	-
Unsupervised	Deep Shells [17]	1.7	2.5	21.1	29.3	3.4	31.1	13.7
	DUO-FMNet [15]	2.5	4.2	6.4	6.7	2.6	15.8	-
	AttentiveFMaps-Fast [25]	1.9	2.1	6.3	5.8	1.2	14.6	28.5
	AttentiveFMaps [25]	1.9	2.2	5.8	5.4	1.7	11.6	23.4
	SSCDFM [48]	1.7	2.6	3.8	5.4	1.2	6.1	-
	ULRSSM [10]	1.6	1.9	4.6	3.9	0.9	4.1	9.2
	Hybrid ULRSSM (ours)	1.4	1.8	4.1	3.3	1.0	3.5	5.1

Donati, Nicolas, Abhishek Sharma, and Maks Ovsjanikov. "Deep geometric functional maps: Robust feature learning for shape correspondence." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

ULRSSM [Cao et al. 2023]

Unsupervised Learning

		FAUST	SCAPE	SHREC'19 [†]	SMAL	DT4	TOPKIDS	
						intra-class	inter-class	
ic	ZoomOut [33]	6.1	7.5	-	38.4	4.0	29.0	33.7
nat	DiscreteOp [41]	5.6	13.1	-	38.1	3.6	27.6	35.5
ion	Smooth Shells [16]	2.5	4.2	-	30.0	1.1	6.3	10.8
ΥY	Hybrid Smooth Shells (ours)	2.6	4.2	-	28.4	X	X	7.5
	FMNet [27]	11.0	33.0	-	42.0	9.6	38.0	-
dn	GeomFMaps [13]	2.6	3.0	7.9	8.4	2.1	4.3	-
S	Hybrid GeomFMaps (ours)	2.4	2.8	5.6	7.6	2.3	4.2	-
	Deep Shells [17]	1.7	2.5	21.1	29.3	3.4	31.1	13.7
p_{i}^{2}	DUO-FMNet [15]	2.5	4.2	6.4	6.7	2.6	15.8	-
vise	AttentiveFMaps-Fast [25]	1.9	2.1	6.3	5.8	1.2	14.6	28.5
<i>per</i>	AttentiveFMaps [25]	1.9	2.2	5.8	5.4	1.7	11.6	23.4
Unsul	SSCDFM [48]	1.7	2.6	3.8	5.4	1.2	6.1	_
	ULRSSM [10]	1.6	1.9	4.6	3.9	0.9	4.1	9.2
	Hvbrid ULRSSM (ours)	1.4	1.8	4.1	3.3	1.0	3.5	5.1

Near-Isometric

		FAUST	SCAPE	SHREC'19 [†]	SMAL	DT4D-H		TOPKIDS
						intra-class	inter-class	
ıatic	ZoomOut [33]	6.1	7.5	-	38.4	4.0	29.0	33.7
	DiscreteOp [41]	5.6	13.1	-	38.1	3.6	27.6	35.5
ion	Smooth Shells [16]	2.5	4.2	-	30.0	1.1	6.3	10.8
Ax	Hybrid Smooth Shells (ours)	2.6	4.2	-	28.4	Х	X	7.5
Sup.	FMNet [27]	11.0	33.0	-	42.0	9.6	38.0	-
	GeomFMaps [13]	2.6	3.0	7.9	8.4	2.1	4.3	-
	Hybrid GeomFMaps (ours)	2.4	2.8	5.6	7.6	2.3	4.2	-
	Deep Shells [17]	1.7	2.5	21.1	29.3	3.4	31.1	13.7
p_{i}	DUO-FMNet [15]	2.5	4.2	6.4	6.7	2.6	15.8	-
vise	AttentiveFMaps-Fast [25]	1.9	2.1	6.3	5.8	1.2	14.6	28.5
nəc	AttentiveFMaps [25]	1.9	2.2	5.8	5.4	1.7	11.6	23.4
Unsup	SSCDFM [48]	1.7	2.6	3.8	5.4	1.2	6.1	-
	ULRSSM [10]	1.6	1.9	4.6	3.9	0.9	4.1	9.2
	Hybrid ULRSSM (ours)	1.4	1.8	4.1	3.3	1.0	3.5	5.1

Non-Isometric

		FAUST	SCAPE	SHREC'19 [†]	SMAL	DT4 intra-class	D-H inter-class	TOPKIDS
Axiomatic	ZoomOut [33]	6.1	7.5	-	38.4	4.0	29.0	33.7
	DiscreteOp [41]	5.6	13.1	-	38.1	3.6	27.6	35.5
	Smooth Shells [16]	2.5	4.2	-	30.0	1.1	6.3	10.8
	Hybrid Smooth Shells (ours)	2.6	4.2	-	28.4	Х	х	7.5
Sup.	FMNet [27]	11.0	33.0	-	42.0	9.6	38.0	-
	GeomFMaps [13]	2.6	3.0	7.9	8.4	2.1	4.3	-
	Hybrid GeomFMaps (ours)	2.4	2.8	5.6	7.6	2.3	4.2	-
	Deep Shells [17]	1.7	2.5	21.1	29.3	3.4	31.1	13.7
p_{i}	DUO-FMNet [15]	2.5	4.2	6.4	6.7	2.6	15.8	-
vise	AttentiveFMaps-Fast [25]	1.9	2.1	6.3	5.8	1.2	14.6	28.5
nəc	AttentiveFMaps [25]	1.9	2.2	5.8	5.4	1.7	11.6	23.4
Unsup	SSCDFM [48]	1.7	2.6	3.8	5.4	1.2	6.1	-
	ULRSSM [10]	1.6	1.9	4.6	3.9	0.9	4.1	9.2
	Hybrid ULRSSM (ours)	1.4	1.8	4.1	3.3	1.0	3.5	5.1

Sup.

Unsupervised

Topologically Noisy

			CCA DE	GUDE GHA [†]			<u></u>	
		FAUST	SCAPE	SHREC'19	SMAL	DT4	D-H	TOPKIDS
						intra-class	inter-class	
tatic	ZoomOut [33]	6.1	7.5	-	38.4	4.0	29.0	33.7
	DiscreteOp [41]	5.6	13.1	-	38.1	3.6	27.6	35.5
ion	Smooth Shells [16]	2.5	4.2	-	30.0	1.1	6.3	10.8
Ax	Hybrid Smooth Shells (ours)	2.6	4.2	-	28.4	X	х	7.5
Sup.	FMNet [27]	11.0	33.0	-	42.0	9.6	38.0	-
	GeomFMaps [13]	2.6	3.0	7.9	8.4	2.1	4.3	-
	Hybrid GeomFMaps (ours)	2.4	2.8	5.6	7.6	2.3	4.2	-
Ι	Deep Shells [17]	1.7	2.5	21.1	29.3	3.4	31.1	13.7
pa	DUO-FMNet [15]	2.5	4.2	6.4	6.7	2.6	15.8	-
vise	AttentiveFMaps-Fast [25]	1.9	2.1	6.3	5.8	1.2	14.6	28.5
Unsuper	AttentiveFMaps [25]	1.9	2.2	5.8	5.4	1.7	11.6	23.4
	SSCDFM [48]	1.7	2.6	3.8	5.4	1.2	6.1	-
	ULRSSM [10]	1.6	1.9	4.6	3.9	0.9	4.1	9.2
	Hybrid ULRSSM (ours)	1.4	1.8	4.1	3.3	1.0	3.5	5.1

More Accurate Crease lines alignments

Reliable under topological noise

Acurate thin structure of the legs and detail alignments on the face

Ablation Studies

Our Hybrid Functional Map

_				
LE	80	Elastic	Elastic Stabil.	Geo. error (×100)
>	٢	1	×	40.2 ± 0.80
>	٢	1	Orthog.	5.75 ± 1.20
~	-	×	×	5.15 ± 0.99
-		1	×	4.37 ± 1.57
~		1	Orthog.	4.33 ± 0.56
-	1	1	Weight. Norm	$\textbf{3.83} \pm \textbf{0.74}$

Ablation table: ULRSSM on SMAL Dataset

Applications to Medical Domain

S3M: Scalable Statistical Shape Modeling through Unsupervised Correspondences

Bastian, Lennart, Alexander Baumann, Emily Hoppe, Vincent Bürgin, Ha Young Kim, Mahdi Saleh, Benjamin Busam, and Nassir Navab. "S3M: scalable statistical shape modeling through unsupervised correspondences." In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 459-469. Cham: Springer Nature Switzerland, 2023.

Applications to Medical Domain

Assessing craniofacial growth and form without landmarks: A new automatic approach based on spectral methods

Magnet, Robin, Kevin Bloch, Maxime Taverne, Simone Melzi, Maya Geoffroy, Roman H. Khonsari, and Maks Ovsjanikov. "Assessing craniofacial growth and form without landmarks: A new automatic approach based on spectral methods." *Journal of Morphology* 284, no. 8 (2023): e21609. 127

takeaways: that's everything

• Generalized Framework for Deep Functional Map systems with non-orthogonal basis

Potential future directions

- 1. Deformations and interpolations
- 2. More hybrid basis/Fmap (eg. learned basis, complex Fmap, ...)
- 3. Partial shape matching

4. ...

Donati, N., Corman, E., Melzi, S., & Ovsjanikov, M. (2022, February). Complex functional maps: A conformal link between tangent bundles. In *Computer Graphics Forum* (Vol. 41, No. 1, pp. 317-334).

Marin, R., Rakotosaona, M. J., Melzi, S., & Ovsjanikov, M. (2020). Correspondence learning via linearly-invariant embedding. *Advances in Neural Information Processing Systems*, 33, 1608-1620.

Donati, Nicolas, Etienne Corman, and Maks Ovsjanikov. "Deep orientation-aware functional maps: Tackling symmetry issues in shape matching." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Thanks!

discussions

LB first 3 Embedding

LB first 2 Embedding + Elas first 3 Embedding

Elas first 1 Embedding